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Least-squares Formulation 

G. R. Liu1, Bernard. B. T. Kee1 

Summary 

An adaptive meshfree method based on strong-form and regularized least-squares 
formulation is proposed. Since strong-form method is used, it possesses many attractive 
features such as simplicity in formulation which eases the implementation of adaptive 
scheme. To solve the instability issue encountered in a strong-form method so as to use it in 
the adaptive analyses, a regularized least-squares procedure is employed. As the stability is 
restored, the present meshfree strong-form method with adaptive capability is successfully 
implemented and tested using a number of examples including solving Poisson’s equation 
and solid mechanics problems. 

Introduction 

In the past few decades, meshfree methods that formulated based on locally supported 
nodes have been actively studied and achieved remarkable success. According to the 
formulation procedure, meshfree methods can be classified into three major categories: 
meshfree strong-form method, meshfree weak-form method and meshfree weak-strong-form 
method [ 1]. Among these three major categories, strong-form method has the simplest 
formulation procedure, which can ease the implementation of adaptive schemes. However, 
strong-form method encounters instability problems, which on other hand makes the 
implementation of adaptive scheme impossible. Without an effective stabilization measure, it 
is not practical to use strong-form method for adaptive analyses. 

In this paper, a regularized least-squares procedure is employed to stabilize the solutions 
of the radial point collocation method (RPCM) that uses radial basis functions (RBFs) and 
locally supported nodes for field function approximation [ 1]. As stability is restored, the 
regularized least-squares RPCM or RLS-RPCM is then incorporated with an error estimation 
and refinement procedure for adaptive analyses. The regularized least-squares procedure not 
only successfully restores the stability but also makes the stiffness matrix to possess some 
good properties such as symmetry and positive definite (SPD), which offsets the additional 
costs in the computation. 

Error indicator based on the interpolation error [ 5] is adopted in our adaptive RLS-
RPCM. This indicator is simple but yet effectively reflects the quality of the local 
approximation. The Voronoi diagram is used to locate the position of additional nodes to be 
inserted in refinement process. 

Function Approximation 

Consider a field function ( )xu  in a problem domain Ω. The value of the field function at 
point of interest x can be approximated using shape functions. These shape functions are 
created through a simple interpolation procedure using basis functions and n supporting 
nodes in the local support domain. The local field function approximation can then be 
expressed using shape functions as 
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where sU  is a vector of unknown nodal field variables at each node in the local support 
domain 

{ }n
T

s uuu L21=U  
(2)

and ( )xΦT  is a vector of shape functions which has the form of 

( ) { }n
T φφφ L21=xΦ  

(3)

in which ( )nii ,2,1 L=φ  is the RPIM shape function for node i in the local support 
domain. The details of the formulation can be found in the references [e.g.,  1,  2]. In this 
work, Multi-quadrics radial basis functions (MQ-RBFs) augmented with completed 2nd order 
polynomial functions are used as basis functions to create shape functions. 

Radial Point Collocation Method 

Radial point collocation method (RPCM) is a strong-form meshfree method that used 
RPIM shape functions for approximation based on locally supported nodes through simple 
collocation procedure (see e.g., [ 1,  6]). 

Assuming that the governing PDEs defined in the problem domain Ω can be described as  

( ) 0=uA                in Ω 
(4)

with Neumann boundary conditions  

( ) 0=uB                on tΓ  
(5)

and Dirichlet boundary conditions  

iuu =                     on uΓ  
(6)

where ( )A  and ( )B  are the differential operators. 

Using equation (1), the discretized system equations can be formed by collocating: 1) 
equation (4) at all internal nodes; 2) equation (5) at the nodes on the Neumann boundary; and 
3) equation (6) at the nodes on the Dirichlet boundary. A set of resultant algebraic equations 
can be assembled in the matrix form as follows. 

FKU =  
(7)

where K  is the stiffness matrix, U  is the vector of unknown nodal field variables and F  is 
the nodal force vector. 

Regularized Least-Squares Procedure 

In this work, a regularized least-squares procedure that is used in solving inverse 
problems (see, e.g., [ 3]) is employed here for our forward problem to stabilize the solutions of 
RPCM. The procedure of regularization is described as follows. 

First, a functional Π is defined in the form of  

{ } { } { } { }TRUTRUFKUFKU −−+−−= TT αΠ  
(8)

where α is a regularization factor which determines the degree of regularization, R is the 
regularization matrix and T is the regularization nodal force vector.  
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To form the regularization matrix R  and regularization nodal force vector T, additional 
prior information for the system is required. In this work, we create R and T in the following 
manner. It is well known that Neumann boundary condition often leads to instability (see, 
e.g., [ 1]). The used of additional conditions on the Neumann boundary can improve the 
stability as discussed in e.g., [ 1]. Therefore, we impose also the governing PDEs in the 
collocation form at the nodes only on the Neumann boundary. 

( ) tΓ0 onuA h
i =  

(9)

A set of resultant algebraic equations can then be obtained in the matrix form as 

0=−TRU  
(10)

In seeking the minima of the functional Π with respect to U , we have 

{ } { } 022 =−+−=∂∂ TRURFKUKU TT αΠ  
(11)

which gives 

[ ] TRFKURRKK TTTT αα +=+  
(12)

or 

FUK ˆˆ =  (13)

where [ ]RRKKK TT α+=ˆ  is the regularized stiffness matrix and TRFKF TT α+=ˆ  is the 
regularized nodal force vector.  

Finally, the vector of unknown nodal field variables U  can be obtained by 

FKU ˆˆ 1−=  
(14)

if K̂  is not singular matrix and well conditioned. 

Form equation (12) we can observe that the regularized stiffness matrix K̂  is symmetric 
and hence at least non-negative definite. The additional RRTα  increase the positivity of the 
stiffness matrix and hence K̂  is often positive definite. Note that if the regularization factor 

0=α , the RLS-RPCM reduces to the RPCM. 

It is very crucial to determine an appropriate value of regularization factor α  because the 
accuracy of the solutions depends on the regularization factor used. On one hand, a large 
regularization factor can provide more stability; on the other hand, we do not want to lose too 
much on accuracy. The guideline of selecting an appropriate regularization factor is to use the 
smallest regularization factor that is just enough to restore the stability. In this work, the L-
curve method [ 4] is used to determine the appropriate value of regularization factor. Note that 
α  only needs to be determined at the initial step and used in all the consequent adaptive 
steps, as we found that α  is insensitive to the number of the nodes used. 

Adaptive Scheme 

In this work, error indicator proposed in [ 5] is adopted here and defined as follows. 

( ) ( ) ( )i
s

i
s

i uu xxx −=η  
(15)

where ( )i
su x  is the value of field function at node i and ( )i

su x  is the reference value of field 
function at node i. These values are evaluated by interpolating the values of the field function 
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at the nodes in local support domain of node i. S  is the nodal set in the support domain of 
node i and { }iSS x\= . 

This error indicator reflects the quality of local reproduction of the interpolation. The 
refinement process will be executed if the following criteria are met. 

( ) max2
**

1 uandi κηηκη >>x  
(16)

where 1κ  and 2κ  are the tolerant values which 10 << iκ ; *η  is the maximum value of error 
indicator in the entire problem domain; maxu  is the maximum value of the field function in 
the entire problem domain. 

In this work, the Voronoi diagram is used to locate the position for the additional nodes 
to be inserted in the refinement process. 

Numerical Examples  

A Poisson’s equation and a solid mechanics problem are solved using the RLS-RPCM to 
examine and demonstrate the proposed adaptive method. In the computation, the shape 
parameters in MQ-RBF are chosen as 0.3=cα  and 03.1=q . Tolerant values 05.021 == κκ  
are used in the adaptive scheme. The following error norm is used for the purpose of 
examining the accuracy of the results of the present adaptive meshfree RLS-RPCM. 

( ) ( )( )∑∑ −=
22 exactapproexact uuue  

(17)

Example 1: 

Consider a Poisson’s equation defined in [ ] [ ]1,01,0Ω ×=  

yxu ππ sinsin2 =∇                        in Ω 
(18)

The Neumann boundary conditions are 

yxxu πππ sincos21−=∂∂        along 0=x  and 1=x  
(19)

yxyu πππ cossin21−=∂∂        along 1=y  
(20)

and the Dirichlet boundary condition is 

yxu πππ sinsin21 2−=              along 0=y  
(21)

In this example, 15 nodes in the local support domain are used for creating RPIM shape 
functions. Regularization factor 5.0=α  is determined at the initial step. The adaptive 
analysis starts from 25 regularly distributed nodes initially and stops at 5th step of iteration 
with 199 nodes as shown in Figure 1. As the exact field function is a smooth function, the 
nodes are regularly distributed in the domain, see Figure 1. 

The error norm of u is drastically reduced from 47.52% to 0.29% through five adaptive 
steps as shown in Figure 2. The u along 5.0=x  at initial step and last step are plotted in 
Figure 3 for comparison. 
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Figure 1. Node distributions for Poisson’s equation problem at each adaptive step 

Figure 2. Error norm of u at each adaptive 
step for Poisson equation’s problem 

Figure 3. The u along 5.0=x  at the initial 
step and final step 

Example 2: 

In the second example, an infinite plate with circular hole subjected to an uniaxial 
traction in horizontal direction is studied and it is considered as a plain strain problem. The 
geometries and material properties are taken as ma 2.0= , mb 0.2= , Young’s modulus 

23101 mNE ×=  , Poisson’s ratio 3.0=υ . As this problem is symmetric, only quarter of the 
problem domain is modelled.  

The governing PDE is described as  

0, =+ ijij bσ               in Ω  
(22)

with Neumann boundary conditions 

ijij tn =σ                     on tΓ  
(23)

and Dirichlet boundary conditions 

ii uu =                          on uΓ  
(24)

In this example, 30 nodes in the local support domain are used for creating RPIM shape 
functions. Regularization factor 005.0=α  is determined at the initial step. The adaptive 
analysis starts from 145 nodes at initial step and terminates at 3rd step with 507 nodes. 

The error norm of Von Mises stress is drastically reduced from 46.44% to 5.4% as shown 
in Figure 5. The normal stresses xxσ  along the left edge of the plate at initial and final steps 
are plotted in Figure 6 for comparison. 
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Figure 4. Node distribution of infinite plate with circular hole at each adaptive step 

Figure 5. Error norm of Von Mises stress at 
each adaptive step 

Figure 6. The normal stress xxσ  along the left 
edge of plate at initial and final steps 

Conclusion 

In this work, a regularized least-squares procedure that is used in solving inverse 
problems is successfully employed to overcome the instability issue in RPCM for solving 
forward problems governed by PDEs. As stability is restored, RLS-RPCM can then be used 
in the adaptive analyses. The numerical examples have shown that RLS-RPCM is very easy 
to implement as an adaptive method to achieve stable results of desired accuracy. 
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